skip to main content


Search for: All records

Creators/Authors contains: "Yan, Xiaodong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite significant progress in solution‐processing of 2D materials, it remains challenging to reliably print high‐performance semiconducting channels that can be efficiently modulated in a field‐effect transistor (FET). Herein, electrochemically exfoliated MoS2nanosheets are inkjet‐printed into ultrathin semiconducting channels, resulting in high on/off current ratios up to 103. The reported printing strategy is reliable and general for thin film channel fabrication even in the presence of the ubiquitous coffee‐ring effect. Statistical modeling analysis on the printed pattern profiles suggests that a spaced parallel printing approach can overcome the coffee‐ring effect during inkjet printing, resulting in uniform 2D flake percolation networks. The uniformity of the printed features allows the MoS2channel to be hundreds of micrometers long, which easily accommodates the typical inkjet printing resolution of tens of micrometers, thereby enabling fully printed FETs. As a proof of concept, FET water sensors are demonstrated using printed MoS2as the FET channel, and printed graphene as the electrodes and the sensing area. After functionalization of the sensing area, the printed water sensor shows a selective response to Pb2+in water down to 2 ppb. This work paves the way for additive nanomanufacturing of FET‐based sensors and related devices using 2D nanomaterials.

     
    more » « less
    Free, publicly-accessible full text available August 15, 2024
  2. Abstract Neuromorphic hardware implementation of Boltzmann Machine using a network of stochastic neurons can allow non-deterministic polynomial-time (NP) hard combinatorial optimization problems to be efficiently solved. Efficient implementation of such Boltzmann Machine with simulated annealing desires the statistical parameters of the stochastic neurons to be dynamically tunable, however, there has been limited research on stochastic semiconductor devices with controllable statistical distributions. Here, we demonstrate a reconfigurable tin oxide (SnO x )/molybdenum disulfide (MoS 2 ) heterogeneous memristive device that can realize tunable stochastic dynamics in its output sampling characteristics. The device can sample exponential-class sigmoidal distributions analogous to the Fermi-Dirac distribution of physical systems with quantitatively defined tunable “temperature” effect. A BM composed of these tunable stochastic neuron devices, which can enable simulated annealing with designed “cooling” strategies, is conducted to solve the MAX-SAT, a representative in NP-hard combinatorial optimization problems. Quantitative insights into the effect of different “cooling” strategies on improving the BM optimization process efficiency are also provided. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)